Real Analysis HW6

Q2: Suppose E_i is a collection of disjoint measurable sets.

(a) Define $F_1 = E_1, F_2 = E_1 \cup E_2, ..., F_n = \bigcup_{k=1}^n E_k$. Then we have

$$\int_E f\chi_{F_n} = \int_{F_n} f = \sum_{k=1}^n \int_{E_k} f.$$

As $\chi_{F_n} \to \chi_{\cup E_k}$, we have the conclusion by MCT.

(b) Since $|f\chi_{F_n}| \leq |f|$ on E, we have

$$\lim_{n \to \infty} \int_E f \chi_{F_n} = \int_E \lim_{n \to \infty} f \chi_{F_n} = \int_E f \cdot \chi_{\cup E_k} = \int_{\cup E_k} f.$$

And for each n,

$$\int_{E} f \chi_{F_n} = \sum_{k=1}^{n} \int_{E_k} f$$

- Q3: (a) Choose a function on \mathbb{R} such that $f \ge -1$ and $\int_{\mathbb{R}} f = -\infty$. Then the function $f_n = \frac{1}{n}f$ converges to 0 everywhere. But the conclusion fails.
 - (b) Choose a function f on \mathbb{R} such that f > 0 and $\int_{\mathbb{R}} f = \infty$ and $f_n = \frac{1}{n}f$.
 - (c) Choose a function $f:[0,1] \to \mathbb{R}$ such that $\int_0^1 f = 1$. Define

$$f_n(x) = nf(nx).$$

Then $f_n(x) \to 0$ but the integral is constant.

(d) Let $f = \chi_{[0,1]}$ and $f_n(x) = f(x+n)$.

Q4: Denote $E_n = \{x : |f(x)| > n\}.$

$$n \cdot m(E_n) \le \int_{E_n} |f| < ||f||_{L^1}.$$

Hence, $m(\cap E_k) \leq m(E_n) \leq \frac{C}{n}$ for all n. Letting $n \to \infty$ to conclude that f is finite almost everywhere.

Noted that $|f_n - f| \leq 2|f|$ for almost everywhere x and $f_n - f \to 0$ a.e. Hence, by DCT,

$$\int_E |f_n - f| \to 0.$$

It remains to show the uniform integrability. Suppose the conclusion fail. There exists $\epsilon > 0$ such that for any n, we can find a $A_n \subset E$ so that $m(A_n) < 2^{-n}$ but

$$\int_{A_n} |f| \ge \epsilon.$$

Define

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Then m(A) = 0 but by DCT

$$\int_{A} |f| \ge \epsilon.$$